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Influence of noise on chaos in nearly Hamiltonian systems

P. V. Elyutin*
Department of Physics, Moscow State University, Moscow 119992, Russia
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The simultaneous influence of small damping and white noise on Hamiltonian systems with chaotic motion
is studied on the model of periodically kicked rotor. In the region of parameters where damping alone turns the
motion into regular, the level of noise that can restore the chaos is studied. This restoration is created by two
mechanisms: by fluctuation induced transfer of the phase trajectory to domains of local instability, which can
be described by the averaging of the local instability index, and by destabilization of motion within the islands
of stability by fluctuation induced parametric modulation of the stability matrix, which can be described by the
methods developed in the theory of Anderson localization in one-dimensional systems.
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I. INTRODUCTION

From the point of view of chaotic dynamics, the Ham
tonian systems are marked out by the omnipresence of ch
for nearly any Hamiltonian system with not less than one a
a half degrees of freedom~with the exemption of completely
integrable models that are nonrobust and therefore ex
tionally rare! the chaotic motion is possible for some initi
conditions. On the contrary, for the dissipative systems of
same complexity of the structure chaotic motion on stra
attractors either could be attained only in limited domains
the parameter space or is not accessible at all@1,2#.

Inclusion of the dissipative terms, even arbitrarily sma
in the canonical equations of motion of the Hamiltonian s
tem can change the character of the motion drastically
particular, such addition can banish the chaos: for exam
for the autonomous Hamiltonian systems with added~vis-
cous! damping the only possible attractors are stable fix
points. It must be noted that this abrupt change may be
sically formal, resulting from the presence of the transition
the infinite time limit in the rigorous definitions of importan
characteristics of chaotic motion, such as the Lyapunov
ponent and correlators of dynamic variables. In many exp
mentally relevant models the ratio of the dissipationg to the
typical frequency of motionv may take very small values
Thus, for radiation damping of vibrations of polyatomic mo
ecules one hasg/v;10210; the same order of magnitude o
g/v turns out for the tidal friction of the celestial bodies
the solar system. In these situations the duration of the ‘‘tr
sient chaos’’ phaseT;g21 is so long that accurate determ
nation of characteristics of the chaotic motion can be car
out without the account of dissipation.

Physically the introduction of dissipation in the equatio
of motion is a form of description of the interaction of a
isolated ~in the zeroth approximation! system with its
environment—a ‘‘heat bath’’ with practically infinite numbe
of degrees of freedom, continuous spectrum of eigenfrequ
cies, and internal dynamics that is independent of the sta
the selected system. This heat bath may be considered al
a source of noise—that is, acting on the selected system
dom forces, whose statistical characteristics are determ
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by the properties of the heat bath alone. The problem
simultaneous influence of small dissipation and weak no
on the features of chaotic motion in the original Hamiltoni
nonautonomous system is the main concern of this pape

The studies of the influence of noise on chaotic mot
were pioneered by Lieberman and Lichtenberg@3# just by
analysis of the effect of fluctuations on the Hamiltonian no
autonomous system. However, the modern paradigm of
domain was formed later by Crutchfield and co-workers@4,5#
who switched the attention to the exploration of strong
dissipative systems~see later review Ref.@6#!. The influence
of noise on the Hamiltonian systems has been discusse
cently in the context of the problem of decay of metasta
chaotic states@7,8#, but in general the field does not seem
be fully investigated.

On the contrary, the influence of small dissipation on t
Hamiltonian chaos is well understood: Afraimovic
Rabinovich, and Ugodnikov@9# have shown that with
switching on a small dissipation phase trajectories of sta
periodic motions of the Hamiltonian nonautonomous s
tems become attractors with regular motion, and chaos
appears. With the further increase ofg these attractors may
lose their stability; annihilation of the last one turns the s
tem back into chaotic motion on a strange attractor that
sembles the chaotic motion of the original Hamiltonian s
tem. This pattern needs two specifications. First, the stra
attractor may emerge before vanishing of the last of regu
ones—the system could be multistable. This case, mentio
in Ref. @9# as ‘‘logically possible,’’ will be met in our model.
Second, if the Hamiltonian system has no islands of stab
that correspond to periodic motion, then the transition fro
Hamiltonian to dissipative chaos can occur immediate
This case, apparently, will be present in our model too.

The aforesaid permits us to specify the main problem
our paper: what intensity of noise is necessary to restore
chaos, repressed by dissipation?

The rest of the text is organized as follows. In Sec. II t
basic model is introduced. Sections III and IV treat tw
mechanisms of restoration of chaos by noise: fluctuat
transfer to domains of local instability and parametric des
bilization of motion within stability islands. Section V trea
the influence of strong noise on the Lyapunov exponent
correlation functions of chaotic motion. Section VI contai
the summary of results and their discussion.
©2004 The American Physical Society05-1
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II. THE BASIC MODEL

We start from the well-known periodically kicked rotor—
the nonautonomous model with the Hamiltonian

H~ I ,u,t !5
I 2

2
1K cosu (

n52`

`

d~ t2n!, ~1!

whereI andu are the dynamic variables~canonically conju-
gated momentum—action and coordinate—angle!, K is the
control parameter, andd(z) is the Dirac delta-function. The
stroboscopic mapping that links values of dynamic variab
at the moments of timen20 andn1120, preceding two
consequent kicks,

I 85I 1K sinu, u85u1I 8, ~2!

is known as the standard, or Chirikov-Taylor, mapping a
thoroughly studied in Ref.@10#.

The generalization of the model~1! that includes dissipa
tion and noise will be described by the equation of mot
for the angular variable,

ü1gu̇2K sinu (
n52`

`

d~ t2n!5j~ t !, ~3!

whereg is the damping constant. Thej(t) in the right-hand
side ~rhs! is the Langevin random force that is a stationa
distributed by a Gaussian law,d-correlated random proces
~white noise! with zero mean and the correlator

^j~ t !j~ t1t!&52gQd~t!, ~4!

whereQ5kBT is the noise temperature in energy units~in
the system of scales of the model!. The model given by Eqs
~3! and ~4! has three parameters:K, g, and Q. We shall
restrict ourselves by the domain of small damping,g!1,
where the system is nearly Hamiltonian.

In the absence of noise, atQ50, the stroboscopic map
ping for this model is given by equations

I 85a~ I 1K sinu!, u85u1b~ I 1K sinu!, ~5!

where

a5e2g, b5g21~12e2g!. ~6!

The two-parameter mapping given by Eqs.~5! is a special
case of the four-parameter Zaslavsky mapping that has b
introduced in Ref.@11# and studied in Refs.@12–14#. The
main efforts of these studies were applied to the caseg*1.
Here we describe in brief the properties of our model for
case of small damping,g!1.

At small and moderate values of the control parameteK
the most important attractor of the mapping, Eqs.~5!, is the
fixed point I 50,u5p, which is stable in the range

K,K15
2~11a!

b
'4S 11

7

12
g2D . ~7!
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For K.K1 the leading attractor is the symmetric cycleC2
s of

two points that are related by equationsI 852I ,u852p
2u. It is stable while

K,K25
p~11a!

b
'2pS 11

7

12
g2D . ~8!

For K.K2 the leading attractors are two asymmetric cyc
of length 2, C2

a1 and C2
a2. The phase coordinates of the

points are related by equationsI 852I , u85p1u. They are
stable in the domain

K,K35
1

b
Ap2~11a!2131a2'2Ap211~110.152g!.

~9!

In general case the system defined by Eqs.~5! is multi-
stable. From the first of these equations it follows that
strip

uI u<I 15
K

expg21
~10!

is the trap~the absorbing set! of the system: any phase tra
jectory that comes within this strip never leaves it. To det
mine the comparative roles of basins of attraction of stra
and regular attractors of the model the fractionf of chaotic
trajectories among the set with random initial condition
uniformly distributed within the trap, was calculated. Th
results are presented in Fig. 1. It can be seen that the str
attractor is born within the domain of stability of the cyc
C2

s , and after the loss of stability of cyclesC2
a1 andC2

a2, in
the rangeK.K3(g), it remains the only apparent attracto
of the system.

For Q.0 the stroboscopic mapping for the system Eq.~3!
has the form

I 85a~ I 1K sinu!1y, ~11!

FIG. 1. The dependence of the fractionf of the trap area, cov-
ered by the basin of attraction of the strange attractor of the sys
Eqs. ~5!, on the control parameterK. The damping valueg50.05.
For each value ofK 100 uniformly distributed initial conditions
were taken.
5-2
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u85u1b~ I 1K sinu!1w,

wherey and w are the random increments~fluctuations! of
action and angle for the unit interval of time. Fluctuationsy
and w at the moment of timet after the beginning of the
motion with definite initial conditions have the Gaussian d
tributions with the dispersions

Dy5Q~12e22gt!, ~12!

Dw5
Q

g2 ~2gt2314e2gt2e22gt!,

respectively@15#. In our casegt[g!1 and Eqs.~12! could
be replaced by their asymptotics

Dy52gQ, Dw5
2

3
gQ. ~13!

Fluctuationsy and w are positively correlated that ha
clear physical meaning: positive increment in velocity~that
is numerically equal to the action! at the unit interval of time
leads, most probably, to the positive increment of coordin
The correlatorM5^yw& by the momentt after the beginning
of motion can be calculated by the method described
Ref. @15#:

M5
Q

g
~12e2gt!2. ~14!

For gt[g!1 the asymptotic value of this correlator isM
5Qg. The joint distribution of fluctuations of action an
angle has the form

w~y,w!5
A3

2pgQ
expF2

1

gQ
~3w223wy1y2!G . ~15!

In the presence of noise the phase trajectory can reach
point of the phase space of the system. However, for finitg
the system with overwhelming probability will stay in th
strip with limited action values that is much narrower th
the trap given by Eq.~10!. For the description of this domai
of concentration of the probability density the term ‘‘attra
tor’’ will be used.

III. THE THRESHOLD OF CHAOS: TRANSFER
TO THE DOMAIN OF LOCAL INSTABILITY

The condition of existence of chaos is, by definition, t
positive value of the Lyapunov exponents. Numerical cal-
culation shows that in our model at moderate values oK
&5.4, when the motion of the system in the absence of n
is regular, the Lyapunov exponent increases withQ and at
some value ofQ0 passes through zero.

We turn to the theoretical description of the onset
chaos. For conservative~area-preserving! mappings with
strong chaos rather accurate estimate for the Lyapunov
ponent could be obtained by averaging of the local instab
index—the logarithm of the maximal in absolute eigenva
of the stability matrix—over the domain of chaotic motio
02620
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@10,16#. Since our model is nearly Hamiltonian, we may t
to use this approach.

The stability matrix for the mapping given by Eqs.~11! is

A5Ua aK cosu

b 11bK cosu
U. ~16!

The local instability index depends only on the angleu; for
K,4

s~u!5 lnUS
2

1AS S

2D 2

2DU, ~17!

whereS5a111bK cosu is the trace ofA andD5a is its
determinant. For smallg almost everywhere in the interva
p/2,u,3p/2 the index is negative and constant,s~u!
52g/2, and the motion is locally stable. Most probably t
system stays in this domain, but under the influence of no
it can sporadically enter the domains of local instability. F
large enough values ofQ their contribution can compensat
the weak squeezing of phase trajectories in the central pa
the attractor.

A. Small K

For small valuesK!1 in the absence of damping~g50!
the evolution of the periodically kicked rotor nearly ever
where in the phase space can be described by the time a
aged~and thus time-independent! Hamiltonian of the system
that is given by Eq.~1!:

H̄~ I ,u!5H~ I ,u,t !5
I 2

2
1K cosu. ~18!

For an autonomous Hamiltonian system the inclusion of v
cous damping and connection to the Langevin~white noise!
heat bath lead to the canonical distribution of probability
the phase space,

W~ I ,u!5N exp2
H̄~ I ,u!

Q
, ~19!

where N is the normalization constant. For the averagi
s5^s~u!& one needs to know the angular distributionW(u).
Its normalized form could be found from Eqs.~18! and~19!:

W~u!5
1

2pI 0~K/Q!
exp2

K

Q
cosu, ~20!

whereI 0(z) is the zeroth-order modified Bessel function
the first kind. Since nearly all probability density is conce
trated in the stability interval, where cosu,0, the contribu-
tion of this domain to the averaged value is

s2'2
g

2
. ~21!

To calculate the contributions of zones of local instabil
we neglect the damping; then we haves(u)'AK cosu.
Positive contribution of two instability strips could be es
mated by following integral:
5-3
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s1'
1

pI 0~K/Q!
E

3p/2

2p

expS 2
K

Q
cosu DAK cosu du. ~22!

The threshold valuesQ0 found by averaging of the loca
instability index and by direct numerical calculation a
compared in Fig. 2.

If K/Q@1, the integral can be calculated analytical
replacing the Bessel function by its asymptotics for lar
value of the argument, and approximating the cosine by
linear function, we obtain

s1'A 1

2K
Q exp2

K

Q
. ~23!

From the condition̂ s&5s21s150 the threshold value o
temperature is determined by the root of the equation

g5A2

K
Q0exp2

K

Q0
. ~24!

This expression yields the asymptotic dependence of
temperature threshold of chaos for smallK: it has the form

Q0'
K

u ln gu
~25!

and possesses a logarithmic accuracy.

B. Large K

The results of the preceding section shows that for sm
K the thresholdQ0 grows with the increase of the contro
parameterK, Q0}K. On the other hand, as it was noted
the Sec. II~see Fig. 1!, for K.K3 chaos in the dissipative
system exists~apparently for any initial conditions! even
without any noise. For the reasons of continuity we m
expect that there may exist a range of values ofK where the
dependenceQ0(K) at the constant dampingg is decreasing.

FIG. 2. The dependence of the temperature threshold of ch
Q0, on dampingg for K50.3. Calculation by Eqs.~21! and ~22!
~line! and numerical calculation~points!.
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The numerical calculation confirms this suggestion~see
Fig. 3!.

For the area-preserving mapping, Eq.~2!, reduced to the
basic square (0<I ,2p)(0<u,2p), for largeK the cha-
otic motion takes place in the chaotic component that cov
the largest part of the phase space@for K.2 the measure of
the chaotic componentm(K).0.78]. For the system with
damping and noise, Eq.~11!, we shall retain the name ‘‘cha
otic component’’ for the part of the attractor that includes t
points of the chaotic component of the conservative syst
and the complementary part will be referred to as ‘‘islands
stability.’’ Limiting ourselves to the caseK,4, we will take
into account only one island of stability that surrounds t
stable fixed pointI 50,u5p.

Some properties of chaotic motion of the system w
damping and noise in the chaotic component could be
scribed by the following simple model. The action variab
for one time step receives the incrementDI'K sinu with the
averaged square value^DI 2&'K2/2. For the motion in the
chaotic component the correlations of the consequent va
of u are small@17,18#, and we can depict the evolution of th
system as the motion of the rotor with the dampingg under
the influence of some Langevin force, a white noise com
from the source with an effective temperatureQ* . From Eq.
~13! we have the estimateQ* 'K2/4g@1. In this approxi-
mation the distribution of phase density in the chaotic co
ponent will become canonical one, with uniform distributio
of angles and the Gaussian distribution of action,

Wc~ I ,u!5A g

2p3K2 expS 2
2g

K2 I 2D . ~26!

This expression is applicable for smallg and largeK.
Let us assume that in the island of stability the probabi

density also has the distribution of the canonical form,

Wi~ I ,u!5N expS 2
H̃~ I ,u!

Q
D , ~27!

s, FIG. 3. Numerically found dependence of the temperat
threshold of chaos,Q0, on the control parameterK for the damping
valueg50.1.
5-4
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INFLUENCE OF NOISE ON CHAOS IN NEARLY . . . PHYSICAL REVIEW E69, 026205 ~2004!
whereH̃(I ,u) is an effective Hamiltonian@a function that is
constant on the invariant curves of the standard mapp
~2!#, andN is the normalization constant. This assumption
plausible in view of Eq.~19!; additional support for it will be
obtained in the following section.

If g andQ are sufficiently small, then the phase trajecto
can leave the island of stability or return to it only by pass
through the narrow strip of the widthd;AgQ along the
border of the island of stability. The probabilityP of finding
a phase point in the chaotic component could be found fr
the balance considerations by equalizingWc andWi on this
border. ForP!1 we can neglect the nonuniformity of th
distribution Eq.~26! in action and obtain the estimate

P5NA2p3K2

g
expS 2

D

Q D , ~28!

whereD is the value of the effective HamiltonianH̃(I ,u) on
the border of the island of stability. At present we can n
calculate this quantity analytically, but from its value tak
from the numerical calculations~and depending only onK)
by Eq. ~28! we can find the dependence ofP on Q andg.

In the numerical experiment the basic square (0<I
,2p)3(0<u,2p) has been separated into 104 cells. A
chaotic trajectory of the standard mapping Eq.~2! in this
square was calculated for 105 time steps, and all cells, in
which the trajectory came at least once, were marked as
mask of the chaotic component. Then for the trajectories
the system with damping and noise, Eq.~11!, the probability
P has been calculated as the fraction of points of the tra
tory whose projections on the basic square got into one of
cells of the mask.

The results of numerical calculations for the valuesK
53 andg50.05 are shown in Fig. 4. Fit of the linear depe
dence of lnP on the inverse temperatureb5Q21 for these
points gives valuesD51.07 andN50.057.

From the assumption that the motion inside the stabi
island gives to the Lyapunov exponent the negative con
bution s252g/2, and that the positive contribution from
the motion in the chaotic component iss15s(K)P, where
s(K) is the Lyapunov exponent value of the Hamiltoni
system, for the temperature threshold of chaos we obtain
equation

Q05
D~K !

ln@s~K !NA8p3K2g23#
. ~29!

The threshold valuesQ0 found by calculating the prob
ability of transfer to the chaotic component by this formu
and by direct numerical calculation are compared in Fig
From Eq.~29! it is seen that essentiallyQ0 is proportional to
the ‘‘activation energy’’D(K); the dependence on other p
rameters is only logarithmic. The general behavior of
dependence on Fig. 3 could be explained by decrease o
size of the stability island with the increase ofK; the dip
aroundK54 reflects the restructurization of the regular
tractor.
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IV. THE THRESHOLD OF CHAOS: PARAMETRIC
DESTABILIZATION IN THE ISLANDS OF STABILITY

Although the agreement between the theoretical curve
the numerical points in Fig. 5 is rather convincing, the
crease of discrepancy at very smallg is strange: just in this
domain the damping must have especially little influen
and the picture of transfer between the island of stability a
the chaotic component promises to be asymptotically ex
Furthermore, this discrepancy could not be neglected fr
the quantitative point of view, since for the sharp depende
of P(Q) small variations ofQ at low temperatures produc
large changes in the positive contribution to the Lyapun
exponents15s(K)P. For example, forK53 andg50.01
substitution of the numerically found valueQ050.086 in Eq.
~28! gives P52.631025 and s151.83102553.5

FIG. 4. Dependence of the probabilityP of finding a trajectory
of motion of the system with damping and noise in the place of
chaotic component of the standard mapping on the inverse temp
ture b5Q21 for the valuesK53 andg50.05. Numerical calcula-
tion ~points! and linear fit to the points~line!.

FIG. 5. The dependence of the temperature threshold of ch
Q0, on dampingg for K53. Calculation by Eq.~29! ~line! and
numerical calculation~points!.
5-5
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31023(g/2). Thus we must conclude that there exists a
other mechanism creating the instability that acts on the p
of phase trajectories that are localized within the islands
stability.

In the domain 2,K,4, in which the island of stability
surrounds the fixed stable pointI 50,u5p, we can consider
the dynamic variablesx5u2p andy5I to be small. Then
by the substitution cosx'12x2/2 the matrix of stability
could be represented in the form

Ã5Ua 2aK1ah

b 12bK1bh
U, ~30!

whereh5Kx2/2 are small corrections. The quantitiesh are
fluctuating under the influence of noise and could be trea
as random. The stochastic modulation of parameters of
mapping leads to destabilization of the motion. The cor
sponding exponent of instability,s1 , we will calculate in
the conservative approximation, since the contribution to
common Lyapunov exponent from damping,s252g/2,
and from stochastic modulations1 for small g are additive.

The transformation of variables determined by matric
Eq. ~30! at g50 can be reduced to the three-term recurr
relation for the angular variable:

xn112~22K2hn!xn1xn2150. ~31!

This expression can be interpreted as an equation for am
tudesxn of the stationary wave function in the quantum on
dimensional tight-binding model with unit nondiagonal m
trix elements ~transfer integrals! between adjacent sites
random site energieshn , and the energy eigenvalueE52
2K ~one-dimensional chain with diagonal disorder!. The
calculation of the Lyapunov exponent for this system w
carried out in the context of the theory of Anderson localiz
tion. For the case in whichhn are independent random var
ables with zero mean,̂h&50, and small dispersion,̂h2&
!1, the Lyapunov exponent has been calculated by Der
and Gardner@19#. Correlations between consequent values
hn were taken into account by Tessieri and Izrailev@20#. The
stochastic Lyapunov exponent is proportional to the disp
sion of fluctuating parameterh:

s15
^h2&

2~4K2K2!
C~v!. ~32!

The correlation factorC(v) in this expression has the form

C~v!5112(
k51

`

bh~k!cos~2vk!, ~33!

wherebh(k) are normalized correlation functions of the ra
dom variableh, bh(k)5^h ih i 1k&/^h

2&, and

v5arccos
22K

2
~34!

is the average angle of rotation of a vector by the lineari
standard mapping. Formula Eq.~32! is applicable for the
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values ofK that are not too close toK50 or K54. In our
case^h&Þ0, but we can include this value in the parame
K; this renormalization will change its value intoK̃5K(1
2^x2&/2). In what follows we shall retain the designationh
for the fluctuating quantity with zero mean,h5K(x2

2^x2&)/2. To use Eq.~32! we have to determine statistica
characteristics of the variableh: its dispersion and correla
tion function. It must be noted at once that for calculation
these quantities the account of damping is essential.

A. Invariant density in the island of stability

Since for low temperaturesQ the phase trajectory nearl
all the time is located in the vicinity of the stable fixed poin
for finding the invariant distribution of the probability den
sity W(x,y) we may use the linearized mappingL̂,

x85by1~12bK!x, y85ay2aKx. ~35!

The motion of the system on a unit time interval can
separated into two stages: the first is the evolution under
mapping, Eq.~35!, the second is addition of the fluctuatio
increments@cf. Eq. ~11!#. The probability of coming in the
vicinity of the point (u,v) after the first stage is proportiona
to the value of the invariant density in the vicinity of it
prototypeL̂21(u,v). The influence of noise can be describ
by the convolution of the obtained distribution with the di
tribution of fluctuation incrementsw(y,w), Eq. ~15!. Thus
for the invariant density we obtain the following integr
equation:

W~x,y!5a21E E du dvWS u2
b

a
v, Ku1

12bK

a
v D

3
A3

2pgQ
expH 2

1

gQ
@3~u2x!2

23~u2x!~v2y!1~v2y!2#J . ~36!

We will look for its solution in the form of a canonica
distribution with the effective Hamiltonian that is bilinear i
actiony and anglex:

W~x,y!5exp2
1

Q
~Ax21Bxy1Cy2!. ~37!

After substituting this expression in Eq.~36!, integrating and
equalizing the coefficients at the identical powers of dynam
variables, in the lowest order ing we obtain the parameter
of Eq. ~37!:

A5
3K

62K
, B52

3K

62K
, C5

3

62K
. ~38!

Now we can calculate the moments of dynamic variabl
e.g.,

^x2&5
1222K

12K23K2 Q, ^xy&5
62K

1223K
Q, ~39!
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and the dispersion of the fluctuating quantity,

^h2&5
1

2 S 1222K

1223K D 2

Q2, ~40!

that enters in the rhs of Eq.~32!.

B. Correlation function

With the known form of the invariant density, the corr
lation function of the angular variablex could be calculated
by the direct integration. For the linearized mapping, E
~35!, the values ofBx(n)5^xixi 1n& could be expressed
through two moments,̂x2& and ^xy&. For example,

Bx~0!5^x2&, Bx~1!5~12bK!^x2&1b^xy&, ~41!

Bx~2!5@12bK~21a!1b2K2#^x2&1~a2bK11!^xy&.

For small g the normalized correlation functionbx(n)
5Bx(n)/Bx(0) can be expressed in the form

bx~n!5cos~ṽn!expS 2
g

2
nD . ~42!

Here the tilde overv reminds that the renormalized value
K̃ must be used in calculations. This formula is compared
the numerical calculations in Fig. 6.

The normalized correlation function of the fluctuatin
variableh can be calculated in a similar way:

bh~n!5cos2~ṽn!exp~2gn!. ~43!

With this expression one can calculate the correlation fa
C(v) @see Eq.~33!#. For smallg it is given by the expression
C(v)'(2g)21. With it, from the conditions21s150 fol-
lows the estimate of the temperature threshold of chaos,

Q052A4K2K2
1223K

1222K
g. ~44!

This formula is too crude for the practical application:
gives only the estimate ofQ0 from below. Here is the reaso
for this limitation: Eqs.~42! and ~43! for the correlation
functions are valid only for small temperatures,Q&g. For
larger values the nonlinear terms that are present in the e
mapping, Eq.~11!, change the frequency of oscillations
the correlation functionbh(n) @see Fig. 6~b!#; by this they
spoil the resonance with the cosine factor under the sum
tion sign in Eq.~33! and considerably decrease the value
C(v), down to the value about 2–3 on the threshold
chaos. The numerical calculation shows that aroundQ0 the
temperature dependence of the Lyapunov exponent is a
rately described by the formula

s52
g

2
1kQ2 ~45!

with a coefficientk about unity. From Eq.~45! the simple
approximation for the temperature threshold follows:
02620
.

o

r

ct

a-
f
f

u-

Q0'cAg, ~46!

where constantc is about unity. The fit of the law, Eq.~46!,
to the points in Fig. 5 givesc'0.88.

V. STRONG NOISE

In this section we will look at the effects of noise wit
temperature much higher than the chaos thresholdQ0.

A. The Lyapunov exponent

With the increase of the noise temperature the Lyapu
exponent increases monotonously and tends to some fi
limit s` ~see Fig. 7!.

Since with the increase of noise the typical values of
crements of the anglew and of the actiony grow, w;y
;AgQ @see Eq.~13!#, for Q@g21 all correlations of dy-
namical variables vanish. Therefore the limiting values` is
equal to the Lyapunov exponent of the infinite product of t
matrices, Eq.~17!, with uncorrelated values ofu, uniformly
distributed in the interval 0<u,2p. For smallK the value of

FIG. 6. Normalized correlation functionbx(n) of the angular
variable for the values of parametersK53 and g50.2. ~a! For
Q50.05 and~b! for Q50.2. Calculation by Eq.~42! ~line! and
numerical calculation~points!.
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s` can be calculated from the result of Ref.@19# for the
localization length at the band edge, namely,

s`52
g

2
10.229K2/3. ~47!

The dependence given by this equation is in good agreem
with the numerical data up to the value ofK'1 ~see Fig. 8!.

It may be noted that from Eq.~47! it follows that for a
given value of dampingg there exist a range of values of th
control parameterK,3.23g3/2 in which chaos could not be
reached for any intensity of the noise. For large valuesK
*3 the limit s` does not differ noticeably from the
Lyapunov exponents(K) of the original Hamiltonian sys-
tem.

FIG. 7. The dependence of the Lyapunov exponents on the
noise temperatureQ for K53 andg50.1 obtained from numerica
calculation ~points!. Parabola in the left part~solid line!—
calculation by Eq.~45! with k51. Horizontal dashed line marks th
limiting value s`50.538.

FIG. 8. The dependence of the limiting value of the Lyapun
exponents` on the control parameterK for g50.1. Calculation by
Eq. ~47! ~line! and numerical calculation~points!.
02620
nt

B. The angular correlations

In the theory of the standard mapping it is customary
study the angular correlations through the properties of
variables5sinu @17,18#. From the symmetry consideration
it has zero mean:̂s&50.

Let us consider the correlation of two consequent val
of this variable:

Bs~1!5^sinu sinu8&. ~48!

When the invariant densityW(I ,u) is known, the calculation
of the correlation, Eq.~48!, is reduced to the twofold inte
gration. For smallK the distribution can be taken as th
canonical one with the averaged Hamiltonian, Eq.~18!. Ap-
proximating the angular distribution by the Gaussian fun
tion, for small dampingg we have the expression

Bs~1!5
1

2 F12expS 2
2Q

K D GexpS 2
Q

2 D . ~49!

FIG. 9. Dependence of the correlation functionBs(1) of the
angular variables5sinu on the noise temperatureQ. ~a! For K
50.3, g50.01. Calculation by Eq.~49! and numerical calculation
~points!. ~b! For K53, g50.05. Calculation by Eq.~50! ~line! and
numerical calculation~points!.
5-8
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It is compared to the numerical data in Fig. 9~a!.
For large values ofK>2 and small temperatures th

value ofBs(1) could be calculated from the distribution, E
~37!:

Bs~1!5~12K !^x2&1^xy&5
1228K1K2

12K23K2 Q. ~50!

It is compared to the numerical data in Fig. 9~b!. The nu-
merical calculation shows in this case the decrease ofBs(1)
with Q for sufficiently high temperatures. The reason for it
qualitatively clear. We have two competing contributions
Bs(1): a negative one from the island of stability and
smaller positive one from the motion in the chaotic comp
nent. The increase of the temperature leads to the increa
the probabilityP of the motion within the chaotic compo
nent, which eventually suppresses the negative contribu
The way of accurate calculation ofBs(1) for high tempera-
tures at present is not known.

Then both for small and large values of the control p
rameterK the increase of the noise temperature~from zero!
induces first the increase of the correlation of the conseq
values of the angular variables5sinu up to some maxima
value, and then its decrease.

VI. CONCLUSION

We have studied above the model of periodically kick
rotor with added damping and white noise. We expect t
some of the established features and relations are typica
will hold at least qualitatively for many representative no
autonomous Hamiltonian systems with chaotic motion. W
this in view, in this section we summarize main results of t
paper in a generalized way. Since the growth of the con
parameter of the standard mappingK increases both the
amount ~given by the invariant measurem of the chaotic
component! and the intensity~given by Lyapunov exponen
s! of chaos we will refer toK as the strength of chaos. I
what follows ~as well as everywhere above! the Lyapunov
exponent denotes the largest of the characteristic expon
of the stroboscopic mapping of the system that can t
negative as well as positive values~one has to keep in view
that for system flows with finite phase velocity there is
ways one zero characteristic Lyapunov exponent that co
sponds to evolution of the infinitesimal displacement alo
the phase trajectory!.

~1! If chaos in a Hamiltonian system is suppressed
addition of small dissipation, then addition of white noi
can, as a rule, restore the chaotic motion. The exceptio
found only for very weak chaos, when the system rema
02620
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regular at arbitrarily intense noise~see Sec. V A!. The in-
crease of the noise intensity raises the Lyapunov expon
In wide context this fact is not quite trivial, since there is
example of the system for which noise diminishes the~posi-
tive! Lyapunov exponent, eventually turning it negative@21#.

~2! The temperature threshold of chaos depends on
strength of chaos of the Hamiltonian system in a nonmono
nous way~see Fig. 3!. For weak chaos it increases with th
strength@in our model by linear law, see Eq.~25!#, since the
effective ‘‘potential well’’ corresponding to the island of sta
bility becomes deeper, whereas for strong chaos the thr
old decreases due to the shrinking of the islands of stabi

~3! There are two essentially different mechanisms of
chaotization of motion by noise. The first one is the fluctu
tional transfer of the motion from the stability island to th
locally unstable regions of the phase space; its contribu
to the Lyapunov exponent depends on the noise tempera
by the ‘‘activation law,’’s1} exp(2D/Q) @see Eqs.~23! and
~28! and Fig. 4#. The second is the parametric destabilizati
inside the islands of stability created by small fluctuations
nonlinear terms of the stroboscopic mapping; its contribut
to the Lyapunov exponent depends on the noise tempera
by the power law,s1}Q2 @see Eqs.~32! and ~40! and Fig.
7#. Any one of these mechanisms could be dominating,
pending on the combination of parameters.

~4! Around the threshold of chaos the motion of the sy
tem with damping and noise differs strongly from the chao
motion of the original Hamiltonian system. It is concentrat
mainly within the islands of stability with only rare excu
sions to the domain of the phase space occupied by the
otic component of the prototype. In this aspect the resto
tion of chaos ‘‘by noise’’ differs radically from the
restoration of chaos ‘‘by damping’’@9#. The similarity to the
original motion could be reached in the domain of stro
chaos and high noise temperatures,Q@1 ~see Fig. 7!.

Lastly it must be noted that the existence of the range
parameters where the transition from Hamiltonian to dissi
tive chaos is immediate~see Fig. 1! may be specific for the
studied model of periodically kicked rotor. In this range t
influence of noise on chaos has qualitative peculiarities: e
the increase of noise could reduce the Lyapunov expon
@for K57 andg50.1 at Q50 s51.260~3!, and atQ5100
s51.228~3!#. The scenario of the immediate transition a
related problems for noisy systems may deserve a spe
study.
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